Metamagnetics with rainbow colors.
نویسندگان
چکیده
A family of coupled nanostrips with varying dimensions is demonstrated exhibiting optical magnetic responses across the whole visible spectrum, from red to blue. We refer to such a phenomenon as rainbow magnetism. The experimental and analytical studies of such structures provide us with a universal building block and a general recipe for producing controllable optical magnetism for various practical implementations.
منابع مشابه
Rainbow numbers for small stars with one edge added
A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f(n, H) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of H . The rainbow number rb(n, H) is the minimum number of colors such that any edge-coloring of Kn with rb(n, H) number of colors contains a rainbow copy o...
متن کاملThe rainbow vertex - index of complementary graphs ∗
A vertex-colored graph G is rainbow vertex-connected if two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. If for every pair u, v of distinct vertices, G contains a vertex-rainbow u−v geodesi...
متن کاملRainbow Domination in Graphs
Assume we have a set of k colors and to each vertex of a graph G we assign an arbitrary subset of these colors. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this is called the k-rainbow dominating function of a graph G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G,...
متن کاملThe rainbow connection of a graph is (at most) reciprocal to its minimum degree
An edge-colored graph G is rainbow edge-connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow edgeconnected. We prove that if G has n vertices and minimum degree δ then rc(G) < 20n/δ. This solves open problems from [5] and...
متن کاملRainbow connections for planar graphs and line graphs
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rc(G) is an NP-Hard problem, as well as that even deciding whether a graph has rc(G) =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2007